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Abstract

Recent advances in general purpose pre-trained
language models have shown great potential
in commonsense reasoning. However, current
works still perform poorly on standard com-
monsense reasoning benchmarks including the
Com2Sense Dataset (Singh et al., 2021). We
argue that this is due to a disconnect with cur-
rent cutting-edge machine learning methods. In
this work, we aim to bridge the gap by intro-
ducing current ML-based methods to improve
general purpose pre-trained language models
in the task of commonsense reasoning. Specif-
ically, we experiment with and systematically
evaluate methods including knowledge transfer,
model ensemble, and introducing an additional
pairwise contrastive objective. Our best model
outperforms the strongest previous works by ∼
15% absolute gains in Pairwise Accuracy and
∼ 8.7% absolute gains in Standard Accuracy. 1

1 Introduction

Endowing NLP models with human-like common-
sense knowledge has remained a challenge for
decades (Sap et al., 2020). In 2021, researchers
proposed Com2Sense (Singh et al., 2021), a reli-
able and comprehensive commonsense reasoning
benchmark with strict pairwise accuracy metrics. It
consists of natural language sentence pairs labeled
True/False based on whether they adhere to intu-
itive commonsense knowledge (Fig.1). The central
evaluation criteria: Pairwise Accuracy, required
that the model predict correctly for both sequences
to count as successful.

Initial works on the dataset revealed that neither
general purpose language models (Devlin et al.,
2019), (Liu et al., 2019), (Raffel et al., 2019), etc.
nor dedicated commonsense understanding models
(Khashabi et al., 2020b), (Khashabi et al., 2020a)

1Our code and data are publicly available for research
purposes at https://github.com/bryanzhou008/
Improving-Commonsense-Reasoning/
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Figure 1: Example data pairs from the Com2Sense test
set along with model predictions. Here SOTA refers
to (Jung et al., 2022) and OURS refers to Model 9 in
Table 1.

performed well on the dataset. All current mod-
els suffer from significant performance drops from
Standard Accuracy to Pairwise Accuracy, display-
ing a huge discrepancy from human-like behaviour.

In this work, we examine possible methods of
improving the performance of general purpose lan-
guage models on the task of commonsense reason-
ing. Specifically, we study the effects of:

• Knowledge Transfer from relevant datasets
containing commonsense knowledge, includ-
ing the SemEval-2020 Dataset2 and the
SQuAD2 QA Dataset (Rajpurkar et al., 2018)

• Introducing a pairwise contrastive loss objec-
tive that forces models to distinguish common-
sensical and non-commensensical statements

• Ensemble general purpose language models of
different backbone architectures to study and
compare their effects on overall performance.

2https://alt.qcri.org/semeval2020/

https://github.com/bryanzhou008/Improving-Commonsense-Reasoning/
https://github.com/bryanzhou008/Improving-Commonsense-Reasoning/
https://alt.qcri.org/semeval2020/


2 Methods

2.1 Knowledge Transfer

SemEval-2020 Dataset Similar to Com2Sense,
Wang et al. (2020) provided a commonsense-
related dataset, SemEval-2020 Task 4, Common-
sense Validation and Explanation(ComVE). Each
instance included a pair of sentences, one of which
makes sense while the other does not.

We hypothesize that using a language model
pretrained on the SemEval dataset, we are able
to achieve better performance than finetuning that
model directly on Com2Sense. We trained the
DeBERTaV3large model on SemEval dataset to get
a checkpoint model. The parameters used for pre-
training are: batch size = 48, lr = 4e-5, weight
decay = 0.01, adam eps = 1e-6, trained for 100
steps. We then finetuned the obtained model on the
Com2Sense dataset with the same parameters as
our best-performing model (Table 2, Line 10) and
compare the two models.

SQuAD2 QA Dataset We hypothesize that the
language model will achieve higher performance
after pretraining on question-answering datasets.
We compared the results from RoBERTabase and
DeBERTaV3large with those from RoBERTabase-
SQuAD2 and DeBERTaV3large-SQuAD2, respec-
tively, by finetuning them on Com2Sense with the
same parameters. We used the parameters in line 3
of Table 2 for RoBERTabase and parameters of our
best model for DeBERTaV3large.

2.2 Pairwise Contrastive Loss

The Com2Sense dataset is complementary in na-
ture. That is, for each statement, there is a comple-
mentary statement constructed with small perturba-
tion on certain words making it concerning similar
common sense concepts but with different (oppo-
site) labels. This unique setting makes Com2Sense
an ideal case for the use of contrastive learning.

We hypothesize that for the model to capture
the semantic difference between commonsensical
inputs vs their syntactically similar counterparts, it
would be beneficial if we can push apart the hidden
representation of each complementary input pair in
the embedding space.

In practice, inspired by the InfoNCE Contrastive
Loss by van den Oord et al. (2018), we propose a
Pairwise Contrastive Loss (PCL) function:

Pxi,xj(W) =
esim(g(xi),g(xj))/τ∑2 N

k=1,k ̸=i e
sim(g(xi),g(xk))/τ

(1)

Here for each complementary input sample pair
(xi, xj) with embedding vectors g(xi), g(xj), where
sim (g (xi) , g (xj)) is the dot product of the L2 nor-
malised inputs and τ is the constant temperature
parameter which we set to 0.5.

The total contrastive loss, L, is defined as the
arithmetic mean over all pairs in the batch of the
cross entropy of their normalised similarities, i.e.

Ltotal = − 1

N

N∑
j=1

logPxj,xj(W) (2)

2.3 Model Ensemble and Rule-Based
Perturbation

Due to the complementary nature of the
Com2Sense dataset, each input data pair should
have one positive sample and one negative sam-
ple. With this fact in mind, we propose a posterior
model ensemble pipeline that aims to reduce the
number of Same-Output Pairs where two predic-
tion labels are the same (either both positive or
both negative). This method further helps our en-
sembled model distinguish between syntactically
similar sentence pairs that represent different ideas.

In practice, we take n finetuned models and rank
them by their pairwise accuracy score on the dev
set to represent our confidence in each model. Then
we use the highest performing model as a base pre-
dictor to generate predictions on the test set, which
would contain a number of Same-Output Pairs. For
each Same-Output Pair, we move down the list of
ranked models by confidence and generate their
predictions. If the new model can differentiate the
two samples (generating one positive and one nega-
tive), we then adopt the new model’s prediction. In
the end, we have an (ideally very small) number of
test pairs that none of the models is able to differ-
entiate between, in which case we randomly assign
different prediction values to the pair.

3 Results

3.1 Different Model Backbones

To find the best model backbone architecture, we
compare the results of BERTbase, RoBERTabase,
DeBERTabase, and DeBERTaV3base with the best



Line Model Pairwise Standard
No. Acc % Acc %

1 UnifiedQA-3B (Khashabi et al., 2020b) 51.26 71.31
2 Maieutic Prompting (Jung et al., 2022) 68.70 75.00
3 DeBERTaV3large (w/ our best parameters) 63.40 77.87
4 DeBERTaV3large + KT 64.19 78.10
5 DeBERTaV3large + KT + CV 66.74 79.39
6 DeBERTaV3large + KT + CV + Contrastive + RP 82.07 82.07
7 DeBERTaV3large + KT + CV + Contrastive + Ensemble(5) + RP 82.62 82.62
8 DeBERTaV3large + KT + CV + Contrastive + Ensemble(8) 78.96 80.53
9 DeBERTaV3large + KT + CV + Contrastive + Ensemble(8) + RP 83.69 83.69

10 Human 95.00 96.50

Table 1: Summary of our results on the Com2Sense test set: KT stands for Knowledge Transfer, CV stands for
Cross Validation, RP stands for Rule-based Perturbation, Ensemble(5) stands for a 5-model ensemble between
DeBERTaV3large and DeBERTaV3base, Ensemble(8) stands for an 8-model ensemble between DeBERTaV3large,
DeBERTaV3base, and RoBERTabase. The best model and method is highlighted with bold texts. For fairness of
comparison, all the above model performances are measured on the official Com2Sense test set.

finetuning parameters used by their respective au-
thors. Our results show DeBERTaV3base to be the
best structure with 48.74% pairwise acc., while
DeBERTabase and RoBERTabase have similar per-
formance at ∼18%. BERTbase is the lowest per-
forming model at ∼3%

To find the best model size, we conduct
multiple experiments with DeBERTaV3base and
DeBERTaV3large under the best finetuning parame-
ters used by He et al. (2021). The results show
that DeBERTaV3large reaches 68.34% pairwise
acc. while DeBERTaV3base reaches 52.76%. This
supports the hypothesis that larger models have
stronger common sense reasoning ability.

After choosing the best performing model
DeBERTaV3large as our base model, we perform
hyperparameter tuning on model parameters includ-
ing: batch size (equivalent batch size after gradient
accumulation), learning rate, and warmup steps. In
each case, we fix all other parameters and test the
effect of different values for the parameter under
investigation. The testing results are documented
in Table 2 lines 9-14, and the best set of parameters
is highlighted in line 10.

3.2 Knowledge Transfer

3.2.1 SemEval-2020 Dataset
As shown in the following table, the model with
transferred knowledge from SemEval-2020 per-
forms better than the best model directly applied
to Com2Sense, with a 0.364% improvement on

pairwise accuracy.

Model Pairwise F1-
Acc % Score

best DeBERTaV3large 68.34 0.8103
SemEval-pretrained 68.84 0.8139

3.2.2 SQuAD2 QA Dataset
From the following table, we can see that models
pretrained on question-answering data did not per-
form as well as those that have not. This can be
because question-answering is a vastly different
task than binary classification.

Model Pairwise F1-
Acc % Score

RoBERTabase 18.84 0.546
RoBERTabase-SQuAD2 13.56 0.554
DeBERTaV3large 68.34 0.810
DeBERTaV3large-SQuAD2 65.83 0.789

3.3 Contrastive Learning and Random
Perturbation

From Table 1 lines 5-8, we observe that in prac-
tice contrastive learning together with the Random
Perturbation helped to improve test performance
by 16%. In this case, we count that random per-
turbation changed 371 out of 2790 pairs in the test
set. While this can have a maximum influence of
13.29% if all changed pairs turn out to be correct,



since it is a purely random perturbation, on aver-
age it should have improved pairwise accuracy by
6.65%.

After removing the benefits of Random Perturba-
tion, we conclude that Contrastive Learning yields
an improvement of 8.77% on average, 2.04% in
the worst case. The improvement can be attributed
to the fact that the Com2Sense dataset comes in a
natural contrastive fashion, with uniform true/false
pairs that need to be differentiated from each other.

3.4 Model Ensemble

From Table 1 lines 6-8, we observe that in prac-
tice model ensemble as a post-processing tech-
nique helps the model perform better compared
to straight-through Random Perturbation, likely be-
cause Random Perturbation only has a 50% chance
of correctly predicting a pair while models used in
the ensemble have a much higher accuracy.

In addition, the ensemble among
DeBERTaV3large, DeBERTaV3base, and
RoBERTabase models outperforms the ensemble
between DeBERTaV3large and DeBERTaV3base
models by 1.07% pairwise acc. This results
supports the common understanding that diversity
in model structures is beneficial for the ensemble.

4 Discussion

4.1 Results Analysis

We make use of the domain, scenario, and
numeracy dimensions of Com2Sense, take the best-
performing model of BERTbase, DeBERTaV3base,
DeBERTaV3large, and SemEval-pretrained
DeBERTV3large, and then calculate each model’s
pairwise accuracy on Com2Sense dev set in every
possible combination of the three dimensions.

In general, BERTbase gives the lowest pairwise
accuracy, as shown in Table 2. The top graph in
Figure 2 further reveals that the model correctly
predicts none of the numeracy data. Comparatively,
it gives better predictions on sentences with com-
parison than with causal relationship, and yields
higher pairwise acc. on temporal sentences than
physical and, lastly, social.

DeBERTaV3base gives boosted pairwise accu-
racy. From the bottom graph in Figure 2, it per-
forms better on comparative data than causal for
all domains. We get slightly better results with
numeracy than without numeracy for the physical
domain, but in reverse for the social domain. The
pattern for the temporal domain is more mixed:

data with numeracy information has higher pair-
wise accuracy than comparisons but decreases for
causal scenarios.

DeBERTaV3large improves the pairwise accuracy
for all categories, but in particular more salient for
social domain and numeracy data, as shown in Fig-
ure 3 top graph. It mostly preserves the pattern of
DeBERTaV3base, while performing better on data
with numeracy information for temporal, causal
sentences.

DeBERTV3large pretrained on SemEval dataset
(Figure 3 bottom graph) generally performs better
in social domain than physical, worst in temporal;
it also improves on data without numeracy. We
do observe, though, the exceptionally higher per-
formance on temporal, comparative, and numeric
sentences, probably affected by knowledge trans-
ferred from SemEval. The pretraining might have
also improved DeBERTV3large’s ability to learn
causal reasoning as its pairwise accuracy increases
for causal scenarios.

4.2 Limitations

The following are areas that we could improve dur-
ing the stages of training and finetuning. Firstly,
due to different hardware limitations on each of our
virtual machines, we were not able to maintain con-
sistent per-GPU batch size when training models
throughout the project. While some of the trials
used 6-instance batches over 8 accumulation steps,
others were only able to use 4-instance batches
over 12 accumulation steps. Such inconsistency in
parameters could have impacted our final results.
Secondly, due to time constraints, we only tested
a limited range of hyperparameters which was not
guaranteed to be the global optimum.

5 Conclusion

In this on-going research project, we have exper-
imented with various methods to improve gen-
eral purpose language models on the common-
sense learning and reasoning task benchmarked
by Com2Sense. We showed that: knowledge trans-
fer from existing commonsense datasets; pairwise
contrastive learning from commonsensical state-
ments and their perturbed counterparts; and en-
sembling models with heterogeneous backbones
yielded the greatest overall performance gains
among other methods. Experiments applying the
methods demonstrate substantial improvements in
all metrics over current SOTA works in the field.
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6 Appendix

6.1 Performance Breakdown

Figure 2: The top graph shows the pairwise accuracy of different dimension combinations for BERTbase, and the
graph below shows the pairwise accuracy of different dimension combinations for DeBERTaV3base.



Figure 3: The top graph shows the pairwise accuracy of different dimension combinations for BERTlarge, and the
graph below shows the pairwise accuracy of different dimension combinations for DeBERTaV3large pretrained on
SemEval dataset.



6.2 Table of Best Parameters

Line Model best batch lr weight adam warmup Pairwise F1 score
No. step size decay ϵ step Acc %

1 BERTbase 1020 32 1e-5 0 1e-8 0 3.01 0.4073
2 BERTlarge 60 64 5e-5 0 1e-8 0 2.51 0.3720

3 RoBERTabase 1040 64 1e-5 0.01 1e-8 0 18.84 0.5463

4 DeBERTabase 6000 32 1e-5 0 1e-8 500 17.84 0.5302
5 DeBERTaV3base 4500 48 1e-5 0.01 1e-6 500 48.74 0.7145
6 DeBERTaV3base 1500 48 3e-5 0.01 1e-6 100 52.76 0.7219
7 DeBERTaV3base 2500 48 3e-5 0.01 1e-6 500 49.00 0.7057
8 DeBERTaV3base 1000 48 9e-6 0.01 1e-6 500 45.48 0.6767
9 DeBERTaV3large 750 64 9e-6 0.01 1e-6 500 67.84 0.8090
10 DeBERTaV3large 1900 48 9e-6 0.01 1e-6 500 68.34 0.8103
11 DeBERTaV3large 1000 48 8.5e-6 0.01 1e-6 500 67.34 0.8111
12 DeBERTaV3large 450 48 9.5e-6 0.01 1e-6 500 66.33 0.7990
13 DeBERTaV3large 1000 48 9e-6 0.01 1e-6 300 67.59 0.8059
14 DeBERTaV3large 1400 48 9e-6 0.01 1e-6 750 66.58 0.8029

Table 2: Summary of hyper-parameter tuning with results calculated on the dev dataset, the experiments are focused
on finding the best model backbone, model size and ideal values for hyper-parameters. The best performing model
and ideal hyper-parameter group is highlighted in bold.



6.3 Cross Validation Details
The training dataset contains 797 pairs of exam-
ples and the development set has 398 pairs. We
hypothesize that leveraging both datasets for train-
ing would yield a more generalized model with a
higher level of reliability. We thus employed k-
fold cross validation on our best DeBERTaV3large
model and tested for k = 2 and k = 5.

As shown in Table 1 lines 3-5, cross validation
helped to improve test performance by 2.5% em-
pirically by incorporating the dev set for finetuning,
which added around 50% more training data. Con-
sequently, the training time escalates with the num-
ber of folds: 2-fold cross validation took around 20
hours to train and 5-fold took more than 50 hours.


